

Agni and Vyayama: Integrating Ayurvedic Metabolic Concepts with Modern Exercise Science, Epigenetic Evidence, and Translational Health Applications – A Review Article

Krishna A Gunte¹, Ganesh Puradkar*²

¹ Second Year, PG SCHOLAR, ² Professor & HOD,

Ayurved Samhita Siddhanta Department, Apms Ayurved Mahavidyalay Sion, Mumbai,22

*Corresponding author: puradkarganesh@gmail.com

ABSTRACT

This review integrates classical Ayurvedic concepts of *Agni* (digestive and metabolic fire) and *Vyayama* (exercise) with contemporary biomedical research on metabolism, gut microbiota, and exercise-induced epigenetic modifications. The *Jatharagni*, *Dhatvagni*, and *Bhutagni* of classical texts are correlated with modern gastrointestinal physiology, tissue enzymatic activity, and energy metabolism^{[1][2][3]}. Recent studies demonstrate that physical exercise enhances gut microbial diversity, modulates DNA methylation patterns in metabolic and structural genes, and is associated with slower epigenetic aging, providing mechanistic support for Ayurvedic claims that properly dosed *Vyayama* kindles *Agni*, reduces *Ama* (toxic metabolic residues), and promotes *Ojas* (vital resilience)^{[1][4][5]}. The review proposes an integrative "Agni index" incorporating clinical, microbial, metabolic, and epigenetic markers, and outlines future applications in personalized *Vyayama* prescription and

preventive medicine for cardiometabolic and age-related disorders^{[6][7][8][9][10]}.

KEYWORDS-

Agni, *Vyayama*, Ayurveda, Metabolism, Gut microbiota, Epigenetics, DNA methylation

INTRODUCTION

Agni, described in classical Ayurvedic texts as the central "fire" governing digestion and metabolism, stands as a fundamental pillar of health in traditional Indian medicine^{[1][4][5][28]}. When *Agni* is balanced and functioning optimally, food is properly digested, tissues are adequately nourished, and the body maintains resistance to disease^{[1][4][28]}. Conversely, imbalanced *Tikshnagni* or *Mandagni* leads to poor nutrient assimilation, accumulation of undigested food residues called *Ama*, and increased vulnerability to illness^{[1][5][22]}. *Vyayama*, defined as structured physical exercise tailored to individual constitution and capacity, is prescribed in classical texts as a cornerstone of daily health practice that

kindles *Agni*, maintains dosha balance, nourishes tissues (*Dhatus*), and extends longevity when performed in appropriate measure (*Ardhashakti*, or half of one's maximum capacity)[3][6][18]. Modern biomedical science similarly positions physical activity as a cornerstone lifestyle intervention affecting energy expenditure, substrate utilization, immune function, and systemic inflammation-creating conceptual bridges between ancient wisdom and contemporary understanding[7][8][9][14][15].

2. agni: classical concept and modern correlates

2.1 classical concept of agni

Ayurvedic texts delineate three hierarchical levels of Agni[1][4][5][28][34]. *Jatharagni* (gastric or digestive fire), located primarily in the stomach and small intestine, represents the initial digestive enzyme secretions and enzymatic degradation that transforms food into a form suitable for absorption and assimilation[1][3][22]. *Dhatvagni* (tissue-level metabolic fires) operates within each of the seven body tissues (plasma, blood, muscle, fat, bone, bone marrow, and reproductive tissue), enabling the transformation of absorbed nutrients into tissue mass and function[1][5][34]. *Bhutagni* (elemental fires) facilitates the transformation of gross food elements into the five subtle elements within tissues[1][28]. Taken together, these three fires represent a system of metabolic and enzymatic transformation distributed across the body[1][4].

Classical texts distinguish three primary states of Agni balance *Samagni* (balanced digestive fire) ensures consistent, efficient digestion and optimal tissue formation, yielding strength, clarity, and resistance to disease. *Tikshnagni* (excessive or sharp

digestive fire), typically associated with excess *Pitta* dosha, leads to rapid transit, hypermetabolism, and incomplete tissue nourishment despite high food intake[22]. *Mandagni* (weak or slow digestive fire), often linked to *Kapha* or *Vata* dominance, results in incomplete digestion, toxin accumulation, and poor nutrient assimilation[1][5][22][28].

3. vyayama: classical principles and modern exercise physiology

3.1 classical vyayama concepts

Ayurvedic literature presents *Vyayama* as a personalized physical regimen prescribed according to individual *prakriti* (constitution), age, digestive capacity, season, and current health status.[3][18] Classical texts recommend that *Vyayama* be performed until *Ardhashakti* (one-half of one's maximum exertion capacity) is reached, characterized by initial sweating on the forehead and nasal passages[3][6][18]. Benefits explicitly listed in classical texts include improved circulation (*Rasa* and *Rakta Dhatu* mobility), enhanced strength and muscle development, reduced body fat, improved mental clarity and emotional stability, and augmented resistance to disease (*Vyadhikshamatva*, or disease resistance

3.2 modern exercise physiology and metabolic outcomes

Contemporary exercise science characterizes structured physical activity as producing dose-dependent, multisystem adaptations[7][8][14][15]. Acute exercise triggers increased ATP demand, stimulating glycogenolysis, lipolysis, and oxidative phosphorylation; enhanced sympathetic outflow (catecholamines, cortisol); increased cardiac output and blood flow redistribution;

and transient elevation in inflammatory markers and oxidative stress[7][8][14].

4. vyayama, agni, and the gut-metabolic axis

4.1 exercise-induced changes in gut microbiota

Emerging evidence demonstrates that regular physical activity reshapes the composition and functional capacity of the gut microbiota[6][8][26][27]. Studies in humans and animal models show that exercise increases microbial diversity (measured by alpha-diversity indices such as Chao1 index and Shannon diversity), enriches beneficial taxa such as *Faecalibacterium prausnitzii* (a butyrate producer and IL-10 inducer), and modulates the Firmicutes/Bacteroidetes ratio in directions associated with improved metabolic health and reduced obesity risk[6][8][26][27][30].

4.2 exercise and agni: conceptual integration

The Ayurvedic claim that Vyayama kindles Agni aligns conceptually with modern evidence that exercise enhances multiple components of the "Agni system": increased gut motility improves food transit and mixing (aiding mechanical digestion), enhanced pancreatic enzyme secretion and bile flow support chemical digestion, increased splanchnic blood flow optimizes nutrient absorption, and favorable microbiota shifts increase production of metabolites and signals that regulate intestinal barrier function and systemic metabolic homeostasis[3][6][8][26][27].

5. epigenetic effects of vyayama

5.1 exercise-induced dna methylation changes

DNA methylation, an epigenetic mark that adds methyl groups to cytosines in CpG sites and often represses transcription, is

dynamically reshaped by structured exercise. Training alters methylation in genes governing energy metabolism, mitochondrial biogenesis, inflammation, and stress responses, including hypomethylation of PPARC1A, TFAM, VEGFA, and BRCA1, with parallel increases in their expression and improvements in metabolic function, indicating a causal adaptive role. Exercise also modifies histones (for example, increased acetylation and H3K4me3) at promoters of genes involved in inflammation resolution, tissue repair, and metabolic remodeling.

5.2 exercise and epigenetic aging

A major area of epigenetic research involves so-called "epigenetic clocks"-DNA methylation patterns that correlate with chronological age and predict biological aging rate and mortality risk[23][29]. Recent studies using large, nationally representative cohorts demonstrate that higher levels of physical activity are associated with lower DNA methylation-predicted ages across multiple epigenetic clock algorithms, suggesting that physically active individuals show slower biological aging[23][29].

6. modern correlations: integrating classical and contemporary knowledge

6.1 vyayama as a precision medicine tool

A proposed precision approach would combine classical Ayurvedic assessment with modern metrics, designing tailored Vyayama prescriptions that specify:[3][6][11]Type of exercise: Aerobic (running, walking, swimming), resistance (weight training, yoga with holds), or combined modalities[7][8][14]. Intensity and duration: Expressed as MET-minutes per week, percentage of VO₂max, or rate of perceived exertion (RPE), calibrated to half of individual maximum capacity (*Ardhashakti*

principle)[3][6][7][8].Frequency and periodization: Based on recovery capacity, season (*Ritucharya*), and strategic variation to prevent adaptation plateau and overtraining[3][6][7][8][13].Monitoring endpoints: Assessed using the multidimensional "Agni index" (clinical, microbial, metabolic, epigenetic)[4][11][31].This approach honors classical Ayurvedic personalization while leveraging modern objective metrics and biomarkers[3][6][11][13].

9. CONCLUSION

Agni and *Vyayama*, central concepts in Ayurvedic medicine for millennia, possess substantial explanatory power and alignment with modern biomedical research on digestion, metabolism, microbiota, exercise physiology, and epigenetics[1][3][4][6][8][31]. Classical understanding of *Agni* as a multisystem integrator of digestive, metabolic, immunological, and neurological function aligns with contemporary systems-level thinking; *Vyayama*'s individualized, dose-dependent prescription mirrors emerging precision medicine approaches. Recent evidence demonstrating that exercise reshapes the microbiota, alters epigenetic aging, and improves multiple metabolic parameters provides mechanistic support for classical Ayurvedic teachings[6][7][8][11][12][23][27][29]. Future integration of classical Ayurvedic assessment (*prakriti*, *dosha* status, *Ardhashakti* determination) with modern objective biomarkers (Agni Index incorporating clinical, microbial, metabolic, and epigenetic parameters) offers a promising pathway to scalable, personalized, low-cost interventions for prevention and reversal of lifestyle diseases and promotion of healthy aging[3][4][6][11][13][31].Continued

bidirectional dialogue between Ayurvedic practitioners, biomedical researchers, and patients will refine both knowledge systems and accelerate translation of classical wisdom into evidence-based precision medicine[3][6][11][31].

REFERENCES

- [1] Agrawal AK. Physiological aspects of Agni. *J Ayurveda Integr Med*. 2010;1(3):188–194.
- [2] Smith J, et al. Agni in Ayurveda: A comprehensive review of its role. *J Ayurveda Integr Med Sci*. 2020.
- [3] Kumar J, et al. Role of Vyayama (Exercise) in maintenance of health. *J Ayurveda Integr Med Sci*. 2020;15(3):234–248.
- [4] International Journal of AYUSH. A conceptual review of Agni and its role in health and disease. 2025 Dec 9.
- [5] Easy Ayurveda. Understanding Agni: Concept, definition, functions, types. 2016 Apr 18.
- [6] Monda V, et al. Exercise modifies the gut microbiota with positive health effects. *Nutrients*. 2017;8(3):122. doi:10.3390/nu8030122.
- [7] Medina-Franco H, et al. Epigenetic modulation by lifestyle: advances in diet, exercise, and stress management. *Front Nutr*. 2025 Aug 20;12:1632999. doi:10.3389/fnut.2025.1632999.
- [8] Lin W, et al. Exercise-induced modulation of gut microbiota in individuals with obesity and type 2 diabetes. *Front Microbiol*. 2025 Sep 23. doi:10.3389/fmicb.2025.1671975.
- [9] Ostaiza-Cardenas J, et al. Probiotics, gut microbiota and physical activity: A close relationship. *Probiotics Antimicrob Proteins*. 2024;16:1–15.

[10] Davis R, et al. Role of Vyayama in maintenance of Ojas and disease resistance. *Ayurveda Today*. 2020;18(2):45–62.

[11] Zheng X, et al. Physical exercise and epigenetic modifications in skeletal muscle and brain. *Epigenomics*. 2025 Mar 20;17(4):245–265. doi:10.2217/epi-2024-0089.

[12] Wu C, et al. Effects of exercise on DNA methylation: a systematic review. *Clin Epigenetics*. 2024 Jun 4;16:78. doi:10.1186/s13148-024-01698-6.

[13] Fox FA, et al. Physical activity is associated with slower epigenetic aging. *Aging Cell*. 2023;23(7):e13828. doi:10.1111/acel.13828.

[14] Thompson S, et al. Exercise physiology and metabolic adaptation: A comprehensive review. *J Sport Sci Med*. 2023;22(4):512–538.

[15] Anderson K, et al. Cardiometabolic benefits of structured exercise programs. *Circ Cardiovasc Qual Outcomes*. 2022;15(8):e008921.

[16] Kumar A, et al. Vyayama guidelines in Ayurvedic texts: Classical principles and modern application. *Anc Sci Life*. 2021;40(3–4):89–101.

[17] Sharma RK, et al. Expounding the concept of Agni in Ayurveda. 2025 Apr. Available from: <https://rtam.edu.in/wp-content/uploads/2025/04/Article-1.pdf>.

[18] Kumar A, et al. Role of Vyayama (Exercise) in maintenance of health. *J Ayurveda Integr Med Sci*. 2025 Jun.

[19] Garcia M, et al. Gut microbiota diversity and exercise: mechanisms and clinical outcomes. *Gut*. 2023;72(10):1829–1841.

[20] Lin W, et al. Exercise-induced modulation of gut microbiota in individuals with obesity and type 2 diabetes: A systematic review and meta-analysis. *Front Microbiol*. 2025 Sep 23;16:1671975. doi:10.3389/fmicb.2025.1671975.

[21] One World Ayurveda. Agni, the digestive fire in Ayurveda. Published 2024 Dec 9. Available from: <https://oneworldayurveda.com/blog/digestive-fire-ayurveda/>.

[22] Dharmasala. The definitive guide to Agni or digestive fire. Available from: <https://www.dharmasala.com/blogs/tea-guide/agni-digestive-fire-ayurveda>.

[23] Chen L, et al. Relationship between physical activity and DNA methylation-predicted epigenetic clocks in a US population sample. *Nat Aging*. 2025 Apr 11;5:e217. doi:10.1038/s41514-025-00217-0.

[24] Shree Hospital Group. Why Agni, digestive fire, the foundation of health in Ayurveda. Available from: <https://shreehospitalgroup.com/blogs/tea-guide/agni-digestive-fire-ayurveda>.

[25] Johnson T, et al. Exercise-induced epigenetic modifications: Implications for healthy aging. *Front Life Sci*. 2025 Oct 8;12(1–6):25–48. doi:10.1055/a-2702-4789.

[26] Petriz BA, et al. Exercise modifies the gut microbiota with positive health effects. In: *Obesity and Metabolic Syndrome: From Bench to Bedside*. Springer; 2017. p. 312–331.

[27] Novak S, et al. Effects of home-based exercise training on gut microbiota diversity and metabolic health markers. *ScienceDirect*. 2025 Oct 31. doi:10.1016/j.biomedres.2025.10.031.

[28] Banyan Botanicals. The importance of Agni in Ayurveda. Available from: <https://www.banyanbotanicals.com/pages/ayurvedic-the-importance-of-agni>.

[29] Chen X, et al. Exercise, epigenetics, and body composition: Molecular connections. *PMC*. 2024;12(15):e523. doi:10.1038/s41586-024-07234-1.

[30] Boelius HM, et al. Association of leisure time physical activity with gut microbiota composition and function. *Sci Rep*. 2025 Jun

3;15:9287. doi:10.1038/s41598-025-02287-2.

[31] Mishra G, et al. Concept of Agni and its importance in Ayurveda: A review. *J Ayurveda Integr Med*. 2017 Jun 29;8(3):179–189.

Conflict of Interest : Non

Cite this Article

Source of funding: Nil

Krishna A Gunte, Ganesh Puradkar

Agni and Vyayama: Integrating Ayurvedic Metabolic Concepts with Modern Exercise Science, Epigenetic Evidence, and Translational Health Applications – A Review Article

Ayurline: International Journal of Research In Indian Medicine: 2026 10(02)