

Exploring the concept of *na ati druta asniyat* with special reference to *agni*

Neha Gaikwad¹, Sanjay Satpute², Ganesh Puradkar³

¹PG Second Year, ²Professor, ³HOD & Professor,

Department of Ayurved Samhita and Siddhanta,

APM Ayurved Mahavidyalaya Sion, Mumbai -22

Abstract:

Ayurveda emphasizes not only the quality and quantity of food but also the manner of eating. *Na Ati Druta Asniyat*—the instruction to avoid eating too fast—is one of the key principles of *Ahara Vidhi Vidhana* described by *Acharya Charaka* in *vimansthana*. This rule plays a crucial role in the maintenance of *Agni*, the central factor governing digestion, metabolism, and health. Rapid eating disturbs the physiological process of digestion, leading to *Agnidushti* and formation of *Ama*, which further predisposes an individual to various digestive and systemic disorders. Modern research supports this concept by linking fast eating to impaired enzymatic digestion, altered satiety signaling, gastroesophageal reflux disease, obesity, and metabolic disorders. This paper explores the concept of *Na Ati Druta Asniyat* with special reference to *Agni* and correlates it with contemporary scientific understanding of digestion and enzyme physiology.

Key words: *Na Ati Druta Asniyat, Agni, Ahara Vidhi Vidhana* Fast Eating, Digestive Enzymes, *Ama*.

Introduction:

In *ayurveda*, *anna* is considered as important factor to promote nourishment of *sharir dhatu, bala, varna, ojas*.

यदनं देहधात्वो जो बलवर्णादिपोषकम् । (च.चि. 15/5)¹

For digestion of this *anna* there is sequential well coordinated process governed by *agni*. Proper digestion depends not only on the nature of food but also eating behaviour. This concept is mentioned by charak in *vimansthana(rasavimanadhyaya)* under *ahara vidhi*. This article focuses on *na ati dhruta ashniyat* ("नातिद्रुतमश्चीयात्")

तत्रेदमाहारविधिविधानमरेगाणामातुराणां चापि केषाज्ज्वित् का
ले प्रकृत्यैव हिततमं भुज्जानानां भवति- उष्णं, स्निग्धं, मात्राव
त्, जीर्णं वीर्याविरुद्धम्, इष्टे देशे, इष्टसर्वोपकरणं, नातिद्रुतं, ना
तिविलम्बितम्, अजल्पन्, अहसन्, तन्मना भुज्जीत, आत्मानम
भिसमीक्ष्य सम्यक् ॥(च.वि. 1/24).²

In the modern era, fast eating has become common due to lifestyle stress, time constrain and distracted eating habits. This behaviour change has been associated with multiple digestive and metabolic disorder. Understanding *na ati dhruta ashniyat* through both *ayurvedic* and modern

perspective helps in establishing its relevance as a preventive dietary guidelines.

Aim: To explore the concept of *na ati druta ashniyat* and evaluate its role in the maintenance of *agni* with modern correlation.

Objectives:

- 1) To explain the classical concept of *Na Ati Druta ashniyat* as described in *Ayurveda*.
- 2) To understand the relationship between eating speed and *Agni*.
- 3) To analyze the effects of fast eating on digestion at the enzyme level.

Material:

Classical Ayurvedic texts:

- 1) *Charaka Samhita* (*vimansthana 1 adhyay*), *chikitsasthana* (15 *adhyay*).
- 2) Commentaries (*Chakrapani*)
- 3) Published modern literature on eating behavior, digestion, and enzyme physiology.

Methodology:

A) Concept Of *Na Ati Druta Ashniyat* (Ayurvedic View)

Na ati druta ashniyat means food should not be consumed rapidly as it disturbs the process of digestion this concept can be understood by *avastha paka*.

अन्नस्य भुक्तमात्रस्य षड्रसस्य प्रपाकतः।
मधुराद्यात् कफो भावात् फेनभूत उदीर्यते॥९॥
परं तु पच्यमानस्य विदग्धस्याम्लभावतः।
आशयाच्च्यवमानस्य पित्तमच्छमुदीर्यते॥१०॥
पक्वाशयं तु प्राप्तस्य शोष्यमाणस्य वह्निना।
परिपिण्डितपक्वस्य वायुः स्यात् कटुभावतः॥११॥
(च.चि. 15/9)³

- 1) ***Prathama avasthapaka*** : As this is the first process which can be

correlated with break down of carbohydrate in mouth through the process of chewing and proper mixing of saliva. In the condition *na ati druta ashniyat* the food does not mix properly with saliva leads to (भोजनस्याप्रतिष्ठानं च) ⁴

2) *Dwitiya avasthapaka* : This paka is also considered as *amla avasthapaka* as it deals with digestive enzyme in condition *Na ati druta ashniyat* due to insufficient saliva mixing ,larger food particles ,reduced surface area the *agni dushti* takes place leads to production of *ama*.

3) *Tritiya avasthapaka* : This *avasthapaka* mainly focuses on absorption of *ahara rasa*, due to production *ama* the *strotorodh* takes place and proper absorption of nutrients is not possible

(भोज्यदोषसादृण्योपलब्धिश्च न नियता).⁵

B) Modern Perspective : Fast Eating And Digestion

The adequate time for eating is considered in between 10 to 20 mins. Less than 10 mins is considered as fast eating and more than 20 mins considered as slow eating. The concept of fast eating can be explained by phases of digestion. The stomach takes around 20 minutes to signal the brain in sending out signals of fullness. When people eat fast, they tend not to feel full and are more likely to overeat.⁶

1) Oral phase : salivary enzymes

Normal process:

- Adequate chewing- stimulation of salivary glands
- Salivary amylase begins carbohydrate digestion
- Food bolus becomes soft and enzymatic primed.

Effect of fast eating

- Inadequate mastification
- Reduced contact time with saliva
- Incomplete carbohydrate digestion

Mechanism in fast eating
when food is consumed rapidly:

- **Reduced Mastification:** Fast eating bypasses adequate chewing, resulting in larger food particles.
- **Decreased Salivary Stimulation:** Shortened oral exposure reduces activation of taste and pressure receptors, leading to decreased parasympathetic stimulation of salivary glands.
- **Reduced Salivary Amylase Action:** Limited saliva secretion and shorter contact time between saliva and food cause incomplete starch digestion.
- **Improper Bolus Formation:** The dry, poorly lubricated bolus passes quickly into the esophagus and stomach

2) Gastric phase: Gastric enzyme

Normal physiology

- Controlled entry of food into stomach

- Balanced secretion of hydrochloric acid, pepsin
- Gradual churningà chyme formation

Effect of fast eating

- Indigestion
- Acid reflux
- Gastric discomfort

Mechanism in Fast Eating

When food is eaten rapidly, the following sequential disturbances occur:

- **Sudden Gastric Overdistension:** Large volumes of food enter the stomach quickly, excessively stimulating stretch receptors.
- **Disordered Acid Secretion:** Overstimulation causes uncoordinated HCl release—either excessive acid (hyperacidity) or insufficient acid relative to food load.
- **Impaired Pepsin Activation:** Inappropriate pH and rapid dilution interfere with the conversion of pepsinogen to pepsin, resulting in incomplete protein digestion.
- **Inadequate Mechanical Churning:** Rapid intake overwhelms gastric motility, preventing uniform mixing of enzymes with food.
- **Altered Gastric Emptying:** Poorly processed food may either empty too quickly or be retained longer, both causing digestive discomfort.

3) Pancreatic phase : Digestive enzyme

Normal function

- Chyme enters duodenum slowly
- Coordinate release of pancreatic amylase, trypsin, chymotrypsin, lipase
- Digestion and absorption

Effect on fast eating:

- Inadequate digestion of fats and proteins and malabsorption

Mechanism in Fast Eating: When food is consumed rapidly, gastric digestion becomes unregulated, leading to the following pancreatic disturbances:

- **Rapid Gastric Emptying:** Poorly processed chyme enters the duodenum suddenly and in large quantities.
- **Inadequate Hormonal Signaling:** The abrupt chyme load disrupts the timely release of secretin and CCK, leading to insufficient or delayed pancreatic secretions.
- **Enzyme-Substrate Mismatch:** Pancreatic enzymes are released in amounts that do not match the nutrient load, resulting in incomplete digestion.
- **Poor Neutralization of Acid:** Inadequate bicarbonate secretion fails to neutralize gastric acid completely, reducing enzyme activity (pancreatic enzymes function optimally at neutral pH).
- **Impaired Fat Digestion:** Reduced lipase activity and poor bile-enzyme coordination lead to fat malabsorption, causing bloating

4) Enteric enzymes :

Normal function

- Brush border enzyme which contains lactase, sucrase, maltase
- Final digestion before absorption

Effect of fast eating:

IBS

Diarrhoea

Mechanism in fast eating.

- **Entry of Poorly Digested Chyme:** Rapid eating causes incomplete oral, gastric, and pancreatic digestion, so large, undigested food particles reach the intestine.
- **Overload of Brush-Border Enzymes:** Enteric enzymes are unable to fully act on excessive or improperly digested substrates, resulting in incomplete breakdown.
- **Increased Intestinal Fermentation:** Undigested carbohydrates are fermented by gut bacteria, producing gas and organic acids.
- **Altered Gut Motility:** Sudden chyme load disrupts normal peristalsis, leading to diarrhea or constipation.
- **Mucosal Irritation and Inflammation:** Persistent exposure to undigested food and fermentation products may irritate the intestinal mucosa, impairing absorption

C) Impact On The Health (Disease wise mechanism)

1) Obesity (*sthoullya*):

- a) In ayurveda considered under ashta nidita purusha.
- b) Mechanism: The fast eating delays the satiety signaling (satisfy a desire or an appetite to the full), the excess calorie intake before brain register fullness.

2) Type 2 diabetes (*Prameha*):

Fast eating leads to rapid intake and absorption of carbohydrate, causing sudden spike in blood glucose level. This results in repeated excessive

insulin secretion from the pancreas. overtime continuous insulin overload reduces insulin sensitivity of tissue which leads to type 2 diabetes mellitus.⁷

3) Gastroesophageal reflux disease (*amlapitta*)

Fast eating leads to rapid gastric distension and excessive gastric acid secretion. The sudden increase in stomach volume and pressure weakens the lower esophageal sphincter, allowing acidic contents to reflux into the esophagus, causing GERD.⁸

Discussion:

Na Ati Druta ashniyat is a behavioral guideline that preserves *Agni* by allowing sufficient time for digestion and enzyme action. Ayurveda recognizes that improper eating speed disrupts *Agni* even if food quality is ideal. Modern science confirms that fast eating alters enzyme secretion, gastric motility, and hormonal regulation, resulting in digestive and metabolic disorders. Thus, this principle represents an early concept of proper dietary habits and preventive of digestive issues.

Conclusion:

Na Ati Druta ashniyat is a vital Ayurvedic guideline for maintaining *Agni* and digestive health. Fast eating disrupts enzymatic digestion and satiety mechanisms, leading to *Agnidushti*, *Ama* formation, and lifestyle disorders such as obesity, diabetes, GERD, and IBS. Following this principle promotes balanced digestion, metabolic harmony, and disease prevention.

References:

- 1) Kale VS. *Grahani Adhyaya Charaka Samhita* (Marathi translation). Rev ed. Part 2. New Delhi: Chaukhamba Sanskrit Pratishtan; 2021. Chikitsa Sthana 15, Shloka 5. p. 353.
- 2) Kale VS. *Rasviman Adhyaya Charaka Samhita* (Marathi translation). Rev ed. Part 1. New Delhi: Chaukhamba Sanskrit Pratishtan; 2021. Vimana Sthana 1, Shloka 24. p. 557.
- 3) Kale VS. *Grahani Adhyaya Charaka Samhita* (Marathi translation). Rev ed. Part 2. New Delhi: Chaukhamba Sanskrit Pratishtan; 2021. Chikitsa Sthana 15, Shloka 9. p. 354.
- 4) Kale VS. *Rasviman Adhyaya Charaka Samhita* (Marathi translation). Rev ed. Part 1. New Delhi: Chaukhamba Sanskrit Pratishtan; 2021. Vimana Sthana 1, Shloka 24(7). p. 559.
- 5) Kale VS. *Rasviman Adhyaya Charaka Samhita* (Marathi translation). Rev ed. Part 1. New Delhi: Chaukhamba Sanskrit Pratishtan; 2021. Vimana Sthana 1, Shloka 24(7). p. 559.
- 6) Gudi SK. Eating speed and the risk of type 2 diabetes: explorations based on real-world evidence. *Ann Pediatr Endocrinol Metab*. 2020 Jun;25(2):80-83. doi: 10.6065/apem.2040028.014. Epub 2020 Apr 22. Erratum in: *Ann Pediatr Endocrinol Metab*. 2020 Dec;25(4):289. doi: 10.6065/apem.2020err.001. PMID: 32615686; PMCID: PMC7336266. [Eating speed and the risk of type 2 diabetes: explorations based on real-world evidence - PMC](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336266/)

7) Gudi SK. Eating speed and the risk of type 2 diabetes: explorations based on real-world evidence. *Ann Pediatr Endocrinol Metab*. 2020 Jun;25(2):80-83. doi: 10.6065/apem.2040028.014. Epub 2020 Apr 22. Erratum in: *Ann Pediatr Endocrinol Metab*. 2020 Dec;25(4):289. doi: 10.6065/apem.2020err.001. PMID: 32615686; PMCID: PMC7336266. <https://pmc.ncbi.nlm.nih.gov/article/s/PMC7336266/>

8) Bor S, Bayrakci B, Erdogan A, Yildirim E, Vardar R. The influence of the speed of food intake on multichannel impedance in patients with gastro-oesophageal reflux disease. *United European Gastroenterol J*. 2013 Oct;1(5):346-50. doi: 10.1177/2050640613500266. PMID: 24917982; PMCID: PMC4040773. <https://pmc.ncbi.nlm.nih.gov/article/s/PMC4040773/>

Conflict of Interest : Non

Source of funding: Nil

Cite this Article

*Neha Gaikwad, Sanjay Satpute, Ganesh Puradkar
Exploring the concept of na ati druta asniyat with special reference to agni*
Ayurline: International Journal of Research In Indian Medicine: 2026 10(02)